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  Introduction

  The term cholinergic system is commonly used for the 
well-known neurotransmitter acetylcholine (ACh) and 
the system of synthesizing enzymes, transporters, recep-
tors and enzymes for degradation. ACh was the first neu-
rotransmitter that has been identified in 1926 by Otto 
Loewi; for that he and Sir Henry Dale received the Nobel 
prize in 1936. In the following years most effort was put 
into exploring the neuronal cholinergic system where 
ACh was identified as neurotransmitter of the postgan-
glionic parasympathetic system, the preganglionic neu-
rons of the sympathetic system, in sweat glands of the 
human axilla, and in several areas of the brain. However, 
in view of phylogenesis, the non-neuronal cholinergic 
system (NNCS) already existed in non-neuronal cells like 
bacteria, algae and protozoa before the nervous system 
was developed (reviewed in Wessler et al.  [1] ). After re-
discovery of the NNCS in the 1990s, the research was 
focussed on the distribution, the functions, the molecu-
lar components and its involvement in pathological con-
ditions. One of the best-reputed organs in this regard is 
the skin. But besides the skin, the NNCS was found in 
many organ systems and for some a role in disorders has 
already been described. Cholinergic receptors seem to be 
expressed by nearly all cell types; however, the expression 
of the receptors alone is not an indication of the NNCS, 
but it is characterized by its ability to synthesize and re-
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  Abstract

  Acetylcholine (ACh) is not only a neurotransmitter but is an 
ancient molecule that can be released by and act on non-
neuronal cells. In these cells the system of ACh-synthesizing 
enzymes, transporters, receptors and degrading enzymes is 
termed the non-neuronal cholinergic system (NNCS). There 
is increasing evidence that the NNCS is dysregulated in vari-
ous diseases and can have an influence on their pathology. 
However, for many organ systems not much is known about 
the expression and function of the NNCS. Thus, this review 
focusses on the role of the NNCS in different organ systems 
in health and disease. Dysregulation of ACh synthesis and 
release, mutations or polymorphisms in genes encoding 
NNCS components, and auto-antibodies against NNCS com-
ponents are common factors influencing disease progres-
sion. Pharmacological agents targeting the NNCS are al-
ready successfully in clinical use for some disorders, indicat-
ing that interfering with this system is very promising and 
more research is needed to elucidate the role of the NNCS in 
different tissues and pathological states.
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lease ACh. Cells that exhibit solely cholinergic receptors 
can serve as effector cells for non-neuronally as well as 
neuronally synthesized and released ACh. Thus, the 
presence of an NNCS has to be classified before consider-
ing its involvement in organ-specific disorders. The same 
molecular components that are necessary for synthesis 
and release of ACh in neurons are often identified in 
non-neuronal cells as well. In neurons and most non-
neuronal cells, ACh is synthesized by the enzyme choline 
acetyltransferase (ChAT) from choline and acetyl coen-
zyme A  [1, 2] . It was shown that ACh can also be pro-
duced by the enzyme carnitine acetyltransferase (CarAT) 
in some non-neuronal cells, e.g. skeletal muscle cells and 
the urothelium  [3, 4] . The rate-limiting step in ACh syn-
thesis is the re-uptake of the essential nutrient choline. 
In the nervous system this is mediated by the high-affin-
ity choline transporter-1 (CHT1)  [5] . In some non-neu-
ronal cells CHT1 is also present  [6–8] , whereas in oth - 
ers the re-uptake of choline is performed by choline 
transporter-like proteins (CTL1–5)  [9, 10]  or organic 
cation transporters (OCTs). In neurons ACh is stored 
and released by the vesicular acetylcholine transporter 
(VAChT)  [11] , whereas in non-neuronal cells VAChT is 
only expressed cell type specifically  [12] . In cells that do 
not express VAChT, ACh is usually not stored but di-
rectly released via OCTs  [13, 14] . Further, the mediato-
phore  [15] , a protein of 220 kDa consisting of 15-kDa 
proteolipid subunits of the vacuolar H + -ATPase, is also 
discussed to be responsible for ACh exocytosis  [15] . Ex-
tracellular ACh exerts its effect on a variety of different 
nicotinic and muscarinic ACh receptors. Nicotinic ACh 
receptors (nAChRs) are ligand-gated cation channels 
consisting of 5 subunits. Nine α-subunits and 4 β-subunits 
are known. The subunits α 2 –α 7  are combined in het-
eropentamers with β-subunits, whereas α 9  and α 10  can 
form α-heteropentamers and α 7  and α 9  can assemble to 
homopentamers  [16] . Interestingly, some nAChR com-
positions, e.g. the homopentameric α 7 -nAChR, were 
shown not only to have ion channel functions but to 
serve as metabotropic receptor  [17, 18] . Recently, mem-
bers of the lymphocyte antigen-6/urokinase-type plas-
minogen activator receptor superfamily were identified 
as endogenous allosteric modulators of nAChR, with 
SLURP (secreted lymphocyte antigen-6/urokinase-type 
plasminogen activator receptor-related peptide)-1 and 
-2 being one of the most characterized members  [19] .

  Muscarinic ACh receptors (mAChRs) are G-protein-
coupled receptors subdivided into inhibitory receptors 
(M2 and M4) and excitatory receptors (M1, M3 and M5). 
M2 and M4 mAChR couple preferentially to G i/9  affecting 

the adenylyl cyclase activity and inhibiting non-selec - 
tive cation channels, transient receptor potential chan-
nels and potassium channels  [20, 21] . M1, M3 and M5 
mAChR couple to G q/11  and increase intracellular calci-
um via generation of inositol 1,4,5-trisphosphate and 
1,2-diacylglyerol  [20, 21] . The degradation of ACh into 
choline and acetate is catalyzed by the enzymes acetylcho-
linesterase (AChE) and the less specific butyrylcholines-
terase.

  A schematic drawing of the NNCS with the ACh syn-
thesizing, releasing, and degrading machinery as well as 
ACh receptors and their modulators is depicted in  fig-
ure 1 .

  Modulation of the neuronal cholinergic system, e.g. by 
AChE inhibitors, is a common treatment for neuronal 
diseases like e.g. Alzheimer’s disease. For some diseases 
targeting the NNCS with cholinergic drugs is a well estab-
lished treatment. However, in many non-neuronal tissues 
not much is known about the expression and function of 
the NNCS. The aim of this review is to give a short over-
view on the involvement of the NNCS in several patho-
logical conditions and on the occurrence of the NNCS in 
healthy tissue and its basic functions there.

  Integumentary System

  The integument is composed of the skin and its deri-
vates, e.g. glands, hair and nails. The most significant cell 
types of the skin are keratinocytes that are able to synthe-
size ACh in high amounts. A single keratinocyte synthe-
sizes and releases a mean of 2 × 10 –17  mol ACh and 7 × 
10 –19  mol ACh per minute, respectively  [22] . Keratino-
cytes also express members of both classes of ACh recep-
tors, the necessary transporters for an efficient auto-/
paracrine cholinergic loop, and the degradation enzyme 
AChE. Skin fibroblasts and melanocytes exhibit molecu-
lar components of the NNCS; however, most information 
about the NNCS is available from keratinocytes. The skin 
NNCS is assumed to regulate the intimate connection 
of keratinocytes, proliferation, differentiation, apoptosis, 
adhesion and migration  [23] . Thus, in healthy skin the 
NNCS is of great impact. Under pathological conditions 
it is involved in several diseases.

   Atopic dermatitis  is a chronic, inflammatory, pruritic 
skin disorder in which ACh levels are elevated 14-fold in 
the superficial epidermis and upper dermis and 3-fold in 
the underlying dermis and hypodermis  [23, 24] . Aller-
gens, infections, environmental pollutants and emotional 
stress trigger the clinical onset of disease with main fea-
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tures being eczematous skin lesions  [25] . In a mouse 
model the histopathology of atopic dermatitis could be 
completely prevented by pretreatment with corticotro-
pin-releasing hormone which is released in response to 
cholinergic stimulation  [26] . These results indicate that 
ACh and the cholinergic system are involved in the regu-
lation of atopic dermatitis  [27] .

   Vitiligo  is a chronic, non-infectious disease that is 
characterized by patchy loss of skin pigmentation, most 
prominent on the face, hands and wrists. The affected 
melanocytes contain a high amount of H 2 O 2 . AChE is 
regulated by H 2 O 2 . High concentrations of H 2 O 2  (10 –3  
mol/l) inhibit AChE, whereas low concentrations of H 2 O 2  
(10 –6  mol/l) activate the enzyme by increasing the maxi-
mum reaction velocity by >2-fold  [28] . AChE is deacti-
vated by H 2 O 2 -mediated oxidation of the amino acid res-
idues Trp(432), Trp(435) and Met(436), leading to an al-
teration of the active site His(440) and subsequently to 
the inhibition of the enzyme  [28] . This mechanism should 

be taken into account for the regulation of the skin NNCS 
because H 2 O 2  can be generated in the millimolar range 
via UV radiation  [23] .

   Mal de Meleda  is a rare autosomal skin disorder that is 
characterized by a palmoplantar keratoderma. An under-
lying mutation in the ARS B gene (EMBL AC: X99977) 
leads to a lack in the non-canonical α 7 -nAChR ligand 
SLURP-1  [19] , which enhances the amplitude of the 
ACh-evoked macroscopic current  [29] . These data sug-
gest that SLURP-1 and the non-neuronal cholinergic 
pathway provide the fine-tuning of keratinocyte func-
tions  [23] .

   Psoriasis  is an immune-mediated non-contagious skin 
disorder with typical generation of plaques. The nAChR 
modulator SLURP-2 is 3.8- and 2.8-fold upregulated in 
psoriatic lesional skin in comparison to normal skin and 
psoriatic non-lesional skin, respectively  [30] . SLURP-2 
binds predominantly to the ligand binding sites of nAChR 
subunits α 3  of keratinocytes, thus being involved in the 

  Fig. 1.  Schematic drawing summarizing the 
components of the NNCS involved in the 
synthesis, release, degradation and signal-
ling of non-neuronal ACh. BChE = Butyr-
ylcholinesterase. 
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pathophysiology of psoriasis through regulation of dif-
ferentiation and apoptosis  [31] .

   Pemphigus  is a rare auto-immune disease with typical 
creation of blisters caused by auto-antibodies against 
about 50 antigens, e.g. desmogleins and ACh receptors 
(M1, M2, M4, M5 mAChR and nAChR subunits α 3 , α 9  
and α 10 )  [32] . Because of this diversity of auto-antibodies, 
several hypotheses about the causes of pemphigus were 
formulated. Grando et al.  [23]  proposed a multiple-hit 
hypothesis with an interplay of antigens regulating cell 
shape and cell-to-cell adhesion. However, non-neuronal 
auto-/paracrine ACh seems to be involved in the pathol-
ogy of pemphigus. Administration of the angiotensin-
converting enzyme inhibitor captopril increased the 
AChE concentration significantly, leading subsequently 
to a reduction of ACh and might therefore induce gen-
eration of the typical pemphigus blisters by acantholysis 
 [33] .

   Palmoplantar pustulosis  occurs mostly in smokers 
where blisters appear on the palms and soles. Abnormal-
ities in the expression of ChAT, AChE and nAChR sub-
units α 7  and α 3  were determined  [34]  and hence conclud-
ed that smoking and the NNCS are involved in this cuta-
neous inflammatory disease  [23, 35] .

  The majority of epidemiological studies demonstrated 
an association of smoking and the incidence of certain 
types of  skin cancer . Smoking is a risk factor for cutaneous 
squamous cell carcinoma  [36]  whereas it lowers the risk 
of classic Kaposi’s sarcoma  [37] . However, tobacco-de-
rived nitrosamines stimulate the α 7 -nAChR expressed by 
oral keratinocytes and subsequently lead to activation of 
STAT (signal transducer and activator of transcription)-3 
and STAT-2 via the Ras/Raf-1/MEK1/ERK pathway and 
Janus kinase (JAK)-2 pathway, respectively  [38] . Thus, 
the α 7 -nAChR is a promising molecular target for thera-
peutic intervention.

  Multiple cells and processes are involved in  cutaneous 
wound healing . One step with distinct participation of ke-
ratinocytes is the epithelialization. Chernyavsky et al.  [39]  
demonstrated that SLURP-1 slows keratinocyte migra-
tion but enhances anti-inflammatory activity whereas 
SLURP-2 increases the outgrowth of keratinocytes dose-
dependently and has a lesser anti-inflammatory effect 
than SLURP-1. Thus, distinct nAChR are able to stimu-
late wound repair via regulation of keratinocyte migra-
tion and inflammation.

  Respiratory System

  The respiratory system consists of different organs 
(e.g. nose, nasopharynx, trachea and lung) that are in-
volved in the transport and exchange of the respiratory 
gases oxygen and CO 2 . The luminal surface of the airways 
is covered by the respiratory epithelium consisting of at 
least 12 cell types. Airway fibroblasts and inflammatory 
cells are also involved in airway pathophysiology. More-
over, autonomic nerve fibres occur close to airways, bron-
chial and tracheal smooth muscle and submucosal glands. 
Thus, it can hardly be discriminated between effects 
caused by the neuronal or the non-neuronal cholinergic 
system. However, it is well known that neuronally re-
leased ACh triggers mucus secretion and bronchocon-
striction via muscarinic receptors that limit airflow  [40] . 
nAChR were also determined in the airways, e.g. on fibro-
blasts, immune cells and epithelial cells  [41] . Stimulation 
of the cholinergic receptors on epithelial cells leads to en-
hanced proliferation  [42, 43]  and improved cell survival 
 [43] . Cleaning the airway surface from inhaled particles 
is facilitated by mucociliary transport which is driven by 
ciliary epithelial cells. ACh is known to regulate the ciliary 
beat frequency via different mAChR. While activation of 
M3 mAChR stimulates ciliary-driven particle transport, 
signalling through M2 mAChR inhibits this process  [44] .

  ACh itself has also been determined in rat tracheal ep-
ithelium (2.8 ± 0.5 nmol/g) as well as in human bronchi-
al epithelium (23 ± 6 pmol/g)  [45] . Moreover, additional 
evidence was provided for the synthesizing enzyme ChAT 
and acetylcholine transporters like OCT, CHT1 and 
VAChT (reviewed in Kummer et al.  [12] ). But some of 
these molecular components were restricted to one or 
only few cell types of the respiratory epithelium. Thus, the 
respiratory NNCS is considered to be cell type specific, a 
fact that complicates the attribution to pathological con-
ditions.

  Asthma and Chronic Obstructive Pulmonary Disease
  Peribronchiolar fibrosis is observed in small airways of 

patients with asthma and chronic obstructive pulmonary 
disease (COPD). A key step of the formation of peribron-
chiolar fibrosis is the transition of fibroblasts into se-
cretory active myofibroblasts that are identified by the 
increased expression of α-smooth muscle actin and 
 collagen type-1  [46] . This takes place under chronic 
 inflammatory conditions. Recently it has been shown that 
the remodelling into myofibroblasts could be reversed by 
administration of the anticholinergic aclidinium bro-
mide, by silencing M1, M2 or M3 mAChR mRNA or by 
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degradation of ACh using AChE treatment  [47] . Thus, 
the NNCS is involved in one of the key steps of COPD 
and asthma consolidation. Furthermore, the NNCS was 
shown to be downregulated in an acute allergic airway 
inflammation animal model  [48] . The immunomodu-
latory effects of ACh in asthma and COPD have been 
 reviewed in detail by Gwilt et al.  [49] . In brief, ACh is 
 assumed to inhibit the early asthmatic reaction by pre-
venting mast cell degranulation but stimulates the lym-
phocyte-driven inflammation by enhancing lymphocyte 
survival and proliferation. In COPD, ACh stimulates the 
inflammatory actions of epithelial cells and lymphocytes 
leading to an increase in pro-inflammatory cytokines. In 
general, in the respiratory system, ACh seems to be pro-
inflammatory in lymphocytes and epithelial cells, anti-
inflammatory in mast cells and macrophages and can ex-
ert both effects in monocytes  [49] .

  Lung Cancer
  Approximately 80–90% of all lung cancer cases are 

considered to be associated with cigarette smoke  [50] . 
Nicotine was shown to induce proliferation of cancer cells 
and seems to even inhibit the apoptotic effect of chemo-
therapeutics  [18, 51] . Both small cell lung carcinoma cells 
as well as non-small cell lung carcinoma cells are able to 
synthesize and release ACh  [52] . Recently, it was shown 
that in small cell lung carcinoma cells, ACh synthesis is 
positively linked to CTL4 expression  [53] , while the cho-
line transport to non-small cell lung carcinoma adeno-
carcinoma cells can be mediated by CTL1 and CTL2  [54] . 
Grozio et al.  [55]  demonstrated that inhibition of α 7 -
nAChR signalling with α-cobratoxin led to enhanced 
apoptosis of adenocarcinoma cells in culture as well as 
in established tumour xenografts in vivo. Further, M3 
mAChR seems to be a promising target for the inhibition 
of tumour growth, as it was shown that various antago-
nists for this receptor inhibited growth of lung cancer 
cells in vitro and in vivo  [56] . Interestingly, an increased 
risk for lung cancer is associated with single nucleotide 
polymorphisms on chromosome 15q25.1, containing 
genes coding for nAChR subunits α 3 , α 5  and β 4   [57, 58]  
and with single nucleotide polymorphisms in the gene for 
nAChR subunit α 9   [59] . The exact function of these single 
nucleotide polymorphisms and how these can be used 
therapeutically is still unknown and has to be elucidated 
in further research studies.

  Cystic Fibrosis
  The highly prevalent genetic lung disorder cystic fi-

brosis is caused by a mutation of the cystic fibrosis trans-

membrane conductance regulator (CFTR) chloride chan-
nel  [60] . ACh represents an important regulator of epi-
thelial ion and water movements. In patients suffering 
from cystic fibrosis, the ACh content was markedly re-
duced  [61] . Interestingly, mAChR and α 7 -nAChR seem 
to be regulators of CFTR  [62, 63] . Activation of α 7 -nAChR 
enhances CFTR-mediated chloride secretion, and CFTR 
and α 7 -nAChR were shown to be associated in a macro-
molecular complex within lipid rafts at the apical mem-
brane of the airway epithelium  [63] . Additionally, pro-
inflammatory cytokine production in response to innate 
immune activation was inhibited by activation of α 7 -
nAChR expressed on tracheal epithelial cells  [64] .

  Cardiovascular System

  Both, the neuronal cholinergic system as well as the 
NNCS were shown to be present in the cardiovascular 
system that consists of heart and blood vessels. Adult 
heart cardiomyocytes are able to synthesize, transport 
and secrete ACh  [65] , whereas in newborn rats ACh is 
only released by autonomic nerve fibres  [66] . The same 
age-dependent expression pattern was observed for 
ChAT  [65]  that showed regional differences in its activity 
 [67] . While in the rat ventricles only 50% of the ChAT 
activity observed for the atria could be detected, the high-
est activity of ChAT was determined in the region of 
the sino-atrial node  [67]  where ACh is responsible for 
 reducing pacemaker activity  [65] . Moreover, CHT1  [65] , 
VAChT  [65] , OCT  [14] , nAChR  [68]  and mAChR  [69, 
70]  were found in cardiomyocytes and the heart, as well 
as in several vascular beds  [71–74]  and endothelial cells 
 [70, 75–77] . In endothelial cells ChAT and ACh itself 
were also detected  [75] . Angiogenesis, the sprouting of 
new blood vessels, is indispensable for normal growth 
and homeostasis; however, when dysregulated it contrib-
utes to the pathogenesis of many disorders like e.g. can-
cer, arthritis, obesity and cardiac diseases.

  Nicotine is a potent stimulator of angiogenesis, which 
is meditated mainly via α 7 -nAChR and involves mitogen-
activated protein kinase and transcription factor nuclear 
factor-κB activation  [77] . This pathway is independent of 
vascular endothelial growth factor and fibroblast growth 
factor, the most important mediators of angiogenesis. En-
dothelial cells were shown to upregulate α 7 -nAChR under 
conditions associated with angiogenesis. The α 9 -nAChR 
on the other hand appears to oppose this pathway  [78] . 
Further, application of the reversible AChE inhibitor 
 donepezil promoted angiogenesis, indicating that it could 
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be used as therapeutic tool for diseases with pathologi-
cally reduced angiogenesis like cardiac diseases  [79] .

   Cardiac diseases  like cardiac ischaemia, hypertrophy, 
heart failure and arrhythmias are still among the world’s 
leading causes for death  [80] . Heart functions are reg-
ulated by the autonomic nervous system interacting 
with the M3 mAChR which is involved in physiological 
and pathological conditions. Moreover, M3 mAChR 
 promotes cardioprotection via suppression of specific 
miRNA in myocardial ischaemia  [81] . Ischaemic heart 
disease is a complex disorder of great clinical impact that 
is often associated with well-known cardiovascular risk 
factors including hypertension, hyperlipidaemia, diabe-
tes, atherosclerosis, heat failure, and aging  [80] .

   Atherosclerosis  is the major cause of heart attack, stroke 
and peripheral arterial disease  [82]  and is characterized 
by arterial wall thickening due to accumulation of lipids. 
Apolipoprotein E plays an important role in lipid metab-
olism, and its deficiency was shown to induce atheroscle-
rosis in mice. In this murine model of atherosclerosis, ad-
ministration of nicotine was shown to promote disease 
 [83] .

  Digestive System

  The digestive system consists of various organs such as 
the pharynx, oesophagus, stomach, small and large intes-
tines, and glandular organs like the liver, pancreas and 
salivary glands.

  Nguyen et al.  [84]  showed that in oesophageal epithe-
lia ChAT, AChE as well as different nAChR subunits can 
be found. Reduced ACh concentrations and signalling 
can lead to a reduction in lower oesophageal sphincter 
function and subsequently to  gastro-oesophageal reflux 
disease   [85] . Additionally, a recent study on cats revealed 
that the NNCS could also contribute to gastro-oesopha-
geal reflux disease by e.g. modulating cell-cell contacts, as 
the expression of components necessary for ACh synthe-
sis and release, namely CHT1, ChAT, VAChT and OCT1, 
was altered in the oesophageal mucosa under pathologi-
cal conditions  [86] .

  The digestive tract is abundantly innervated by cholin-
ergic neurons  [87] ; thus, many effects can be contributed 
to neuronal rather than non-neuronal ACh. Smooth 
muscle cell contraction of the gastro-intestinal tract is 
mediated by M2 and M3 mAChR, the latter being less 
abundantly expressed, however functionally more rele-
vant  [88] .

  Gastric pepsinogen secretion is mainly driven by ACh 
signalling via M1 and M3 mAChR, as in gastric mucosa 
of M1/M3 mAChR double-deficient mice carbachol-in-
duced pepsinogen secretion was abolished  [89] . While 
M1 mAChR is only present on pepsinogen-producing 
chief cells, M3 mAChR can also be found on other cell 
types of the gastric gland  [89] . Thus, M3 mAChR local-
ized on parietal cells was reported to be mainly respon-
sible for secretion of gastric acid  [90] . Alterations in the 
cholinergic process of pepsinogen and gastric acid secre-
tion can contribute to  gastric and duodenal ulcers   [91] . 
Accordingly, anticholinergic agents are successfully used 
as therapy for these conditions.

  Cholinergic receptors play an important role in the 
regulation of ion transport across the intestinal epithelial 
cell membrane  [92] . Further, enhanced M3 mAChR sig-
nalling seems to increase the permeability to macromol-
ecules in the mouse jejunum and thus leads to barrier 
dysfunction which can subsequently cause initiation and 
exacerbation of intestinal disease  [93] . It was shown that 
ChAT is expressed by cells of the intestinal epithelium as 
well as by microfold cells covering Peyer’s patches  [94] . 
Isolated rat colonic crypt cells express ChAT and OCT, 
and non-neuronal ACh could be measured in concentra-
tions of 1.8 and 11.9 nmol/g for the proximal and the dis-
tal colon, respectively  [95] . In the rat mucosa, the release 
of ACh could be further induced by stimulation with the 
bacterial fermentation product propionate  [95] .

  In  colon cancer  cells, an upregulation of M3 mAChR 
was observed  [96]  and it was shown that muscarinic ago-
nists are able to stimulate colon cancer cell migration and 
invasion via induction of matrix metalloproteinase-1 
 [97] . Further, α 7 -nAChR  [98]  and CTL1–5  [53]  are pres-
ent on colon cancer cells. Interestingly, knock-down of 
CTL4 can lead to suppression of cell growth as CTL4 ex-
pression is positively linked to ACh synthesis  [53] . Like 
in other cancer cells, stimulation of α 7 -nAChR by ACh or 
nicotine is able to induce cell proliferation and to inhibit 
apoptosis of colon cancer cells  [99] . α 7 -nAChR is nega-
tively regulated by SLURP-1 that is also present in colon 
cancer cells as well as in the immune cells of the lamina 
propria and smooth muscle tissue of the colon  [98, 100] .

   Inflammatory bowel diseases  comprise disorders like 
ulcerative colitis as well as Crohn’s disease. Patients with 
inflammatory bowel diseases show significantly lower 
AChE activity and correspondingly higher levels of 
 miRNA-132, a post-transcriptional inhibitor of AChE 
 [101] . Interestingly, patients with Crohn’s disease or ul-
cerative colitis differ in their response to nicotine. While 
for Crohn’s disease smoking clearly worsens the symp-
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toms  [102] , for ulcerative colitis it seems to have protec-
tive effects and can reduce mucosal inflammation (re-
viewed in de Jonge and Ulloa  [103] ). Patients with ulcer-
ative colitis show an enhanced expression of M2 mAChR 
and a downregulation of ChAT  [104]  and nAChR subunit 
α 3   [105]  in the colon epithelium. The α 7 -nAChR plays an 
important role in colitis as it was shown that α 7 -nAChR-
deficient mice suffered from increased severity of experi-
mentally induced colitis  [106] . However, these anti-in-
flammatory effects of α 7 -nAChR stimulation are most 
probably mediated by resident immune cells in the intes-
tine expressing this receptor  [107] . Further, the nAChR 
subunit α 5  also seems to play a role in colitis as nAChR 
subunit α 5 -deficient mice revealed an enhanced suscepti-
bility to experimentally induced colitis  [108] .

  The pancreas is a gland with endocrine and exocrine 
function. The endocrine release of hormones is facilitated 
by the islands of Langerhans and the exocrine release 
of digestive enzymes by pancreatic acinar cells. The exo-
crine function was shown to be mediated by M1 and M3 
mAChR as carbachol-induced amylase secretion was sig-
nificantly reduced in M1 and M3 mAChR single-defi-
cient mice and completely abolished in M1/M3 mAChR 
double-deficient mice  [109] . Further, nicotine can induce 
the proliferation of these cells  [110] . Most interestingly, 
pancreatic stellar cells were shown to express ChAT and 
VAChT and are able to synthesize non-neuronal ACh, 
which then can induce amylase secretion in neighbouring 
acinar cells  [111] .

  In the islands of Langerhans, M3 mAChR expressed on 
β-cells was demonstrated to be of great importance for the 
maintenance of blood glucose homeostasis as activation of 
this receptor enhances glucose-induced insulin release by 
β-cells and improves glucose tolerance  [112] . In humans 
the cholinergic innervation of the islands of Langerhans is 
sparse; however, α-cells of the pancreas express ChAT as 
well as VAChT, thus non-neuronal ACh produced by 
these cells is able to enhance M3 mAChR signalling in 
neighbouring β-cells  [113] . Transgenic mice overexpress-
ing M3 mAChR were protected from detrimental meta-
bolic effects like hyperglycaemia caused by a high-fat diet 
 [112] , indicating that enhanced signalling through M3 
mAChR may be a useful treatment for  type 2 diabetes .

   Pancreatitis  is an acute or chronic inflammation which 
occurs when pancreatic digestion enzymes are activated 
before reaching the small intestine. Its pathology appears 
to be aggravated by smoking  [114] , and pancreatic M3 
mAChR was shown to be upregulated after induction of 
acute pancreatitis in the rat  [115] .

  Urinary System

  The urinary system consists of organs involved in the 
generation and excretion of urine and associated organic 
substances. Here we focussed on the urinary bladder and 
kidneys. Recently, proof was provided for an NNCS in the 
kidney comprising the synthesizing enzyme ChAT and 
the transporters VAChT and CHT1  [116] . ChAT was lo-
calized in the apical part of principal cells of the renal 
cortical collection ducts suggesting that ACh might be 
released into the lumen and act via an auto-/paracrine 
loop  [116] . ACh enhances the excretion of ions and water, 
thereby promoting diuretic effects and hypotension  [117, 
118] . It is assumed that ACh acts directly on renal tubules, 
glomeruli and Bowman’s capsule via binding to choliner-
gic receptors. Both, nAChR as well as mAChR were ex-
pressed in several renal regions  [119–126] . Only few re-
ports are available on the involvement of molecular com-
ponents of the cholinergic system in renal pathologies. In 
contrast, in several bladder disorders antimuscarinic 
agents have been used for years as clinical first-line treat-
ment. The autonomic nervous system regulates the uri-
nary micturition. The parasympathetic system is respon-
sible for the voiding, that is regulated via mAChR on the 
detrusor smooth muscle. In the healthy situation, M3 
mAChR causes direct and M2 mAChR indirect contrac-
tion of detrusor muscle whereas M1 mAChR increases 
and M4 mAChR decreases the release of ACh and there-
fore might influence afferent nerve activity and stimulate 
the release of ATP and nitric oxide from umbrella cells 
 [127] . In addition to the neuronal cholinergic system, the 
occurrence of a bladder NNCS has been described  [4, 128, 
129] . ACh could be measured in the abraded urothelium 
at concentrations of 0.22 ± 0.03 nmol/g wet weight in 
mouse and 8 and 14 pmol/g wet weight in human samples 
 [4] . In contrast to the nervous system and several non-
neuronal organ systems, ACh was not synthesized by 
ChAT but CarAT and not transported by VAChT and 
CHT1 but by OCT  [4] . The presence of ChAT and CHT1 
still remains controversial  [128, 129] . However, despite 
this controversy, the NNCS is indisputably present in the 
urothelium and is accompanied by several nAChR and 
mAChR  [130, 131]  that were also analysed in bladder dis-
orders.

  Kidney and Bladder Disorders
   Acute kidney injury  often caused by sepsis leads to an 

increased risk of death that could be significantly de-
creased after administration of nicotine in an animal 
model  [132] . Thus nAChR seems to act in an anti-inflam-
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matory manner also in kidney diseases. It is still contro-
versially discussed if the administration of nicotine im-
proves  ischaemia-reperfusion injury  in the rat kidney via 
stimulation of α 7 -nAChR  [126, 133, 134] . However, ad-
ministration of nicotine mediates the progression of 
 chronic kidney disease  via α 7 -nAChR in an animal model 
and in human smokers where it is characterized by a pro-
gressive loss of renal function  [124, 135, 136] .

  The  overactive bladder  syndrome is clinically charac-
terized by symptoms of urgency, nocturia and occasion-
ally incontinence  [137] . The first-line treatment is admin-
istration of antimuscarinic agents that block more or less 
selectively muscarinic receptors and thereby reduce the 
bladder tone and increase the cytometric capacity  [127, 
138–140] . This improvement of overactive bladder symp-
toms is most anticipated during the storage phase where 
the afferent activity is altered and an involvement of the 
NNCS is controversially discussed  [127, 140, 141] .

   Bladder outlet obstruction  is characterized by an intra-
vesical outlet obstruction that is often associated with de-
trusor overactivity and dramatic growth responses of mus-
cles and ganglion cells through hyperplasia and hypertro-
phy (reviewed in Ochodnicky et al.  [142] ). Recently, the 
NNCS was shown not to be regulated on the mRNA level 
in this disease  [143]  whereas a downregulation was mea-
sured for the neuronal nAChR subunits α 10  and α 5  (dorsal 
root ganglia L5–S2)  [144] . Further, a mutation of the M3 
mAChR is associated with the onset of bladder outlet ob-
struction  [145] . However, the plasticity at the level of in-
nervation leads to the assumption that the autonomic ner-
vous system is most involved in bladder outlet obstruction, 
eventually in interaction with the NNCS  [142] .

  Reproductive System

  The female reproductive system comprises the vagina, 
cervix, uterus, oviducts and ovaries. The penis, testis and 
respective glands like the prostate gland belong to the 
male reproductive system. In females, production of non-
neuronal ACh was shown for the human vagina  [42] , 
granulosa cells of the ovary  [146] , the placenta  [147] , and 
the oviduct  [148] . Like the bladder, the uterus is richly 
 innervated by cholinergic neurons, and contractions are 
mainly mediated via M2 and M3 mAChR  [149] . The hu-
man placenta is not cholinergically innervated; however, 
non-neuronal ACh is released via OCT1 and OCT3  [147]  
and can regulate different physiological functions like 
blood flow, vascularization and nutrient transport via 
nAChR  [150] . Further, M1–M4 mAChR are expressed 

in the human placenta  [151] . In the oviduct, different 
nAChR and mAChR subtypes are expressed with M3 
mAChR being mainly responsible for an increase in cal-
cium signalling  [152] , which could also play a role in 
myogenic contractions.

   Tubal ectopic pregnancy  is a complication of pregnan-
cy where the embryo implants outside the uterine cavity, 
in most cases in the oviduct. Smoking increases the risk 
for ectopic pregnancy, a mechanism that seems to be me-
diated via the α 7 -nAChR  [153] . Interestingly, during 
pregnancy α 7 -nAChR was shown to be downregulated in 
the oviduct, possibly as a protective mechanism against 
this complication  [152] . Generally, smoking during preg-
nancy is associated with an increased risk for various 
complications. Nicotine exposure was shown to result in 
low birth weights, cognitive dysfunctions as well as im-
paired lung function of newborns. With prenatal nicotine 
exposure expression of α 7 -nAChR is enhanced in the neo-
natal lung  [154] . Further, the risk of infant respiratory 
tract infections is supposed to be enhanced by in utero 
nicotine exposure, due to α 7 -nAChR-mediated influence 
on alveolar macrophages  [155] .

   Pre-eclampsia  is an anti-angiogenic state associated 
with high blood pressure and proteinuria that can occur 
during pregnancy. Interestingly, nicotine exposure was 
shown to reduce the risk of pre-eclampsia by reducing 
the placental production of soluble vascular endothelial 
growth factor receptor 1 and inducing placental growth 
factor, thereby inducing angiogenesis  [156] . Additional-
ly, activation of α 7 -nAChR seems to reduce placental cy-
tokine production and thus further protects from pre-ec-
lampsia  [157] .

  In the male reproductive system, the presence of an 
NNCS was clearly shown for the testis, as ACh-synthesiz-
ing enzyme ChAT, transporters and ACh receptors were 
expressed in non-innervated testis parenchyma  [158] . 
ChAT was also shown to be expressed in spermatozoa 
 [159] , and release of non-neuronal ACh was measured in 
the germinal epithelium  [158] . For the prostate gland, ac-
tivation of mAChR results in secretion of prostate fluids 
 [160]  as well as in contractile response which is being me-
diated via M3 mAChR in the mouse  [161] . Further, pros-
tate cells were shown to express the ACh-degrading en-
zymes AChE and butyrylcholinesterase  [162] .

  Nicotine has negative effects on spermatogenesis and 
steroidogenesis; most interestingly, mice deficient for α 7 -
nAChR produce sperm with impaired motility  [163]  and 
mAChR agonists increase sperm motility in humans 
 [164] . Many effects of ACh in the male reproductive tract 
such as vaso-activity, sperm transport, muscle contrac-
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tion and cell secretion are mediated via mAChR  [165] . 
However, more research in this area is needed to explore 
the exact functional influence of the NNCS and its pos-
sible role in reproductive system pathology.

  Immune System

  Already more than 80 years ago, ACh was reported to 
be present in ox blood (reviewed in Kawashima and Fujii 
 [166] ). However, only in 1993 were Kawashima et al. 
 [167]  able to convincingly demonstrate the presence of 
ACh in the human blood and that it was produced main-
ly by mononuclear leucocytes. The ACh-synthesizing en-
zyme ChAT is expressed predominantly by T cells (main-
ly by CD4+ T helper cells) but also by dendritic cells, 
granulocytes, macrophages and mast cells  [168] . Upon 
contact with antigen-presenting cells activated T cells 
show an increase in ChAT activity and enhanced ACh 
synthesis via T cell receptor/CD3-mediated and CD11a-
mediated pathways  [168] . It is not clear whether in im-
mune cells ACh can be stored in vesicles as VAChT was 
not detectable. Thus, it is more likely that newly synthe-
sized ACh is directly released upon requirement  [169] . 
Recently, Fujii et al.  [170]  suggested that ACh release in 
T cells is at least partly mediated via mediatophore. Im-
mune cells are able to express mAChR as well as nAChR 
subtypes; however, expression patterns of these recep -
 tors seem to vary between individual subjects  [171] . M1 
mAChR was shown to play a role in the early differentia-
tion of CD8+ T cells  [172] , and M5 mAChR is upregu-
lated after activation of T cells  [168] . Numerous studies 
revealed that mAChR activation has pro-inflammatory 
effects in different cell types. Accordingly, activated 
mononuclear leucocytes from M1/M5 mAChR-deficient 
mice produced significantly less pro-inflammatory cyto-
kines  [173] . Further, mAChR stimulation increases the 
number of leucocytes in splenic venous blood  [174] . In 
contrast, activation of nAChR has been reported to have 
anti-inflammatory effects and especially the α 7 -nAChR 
was thoroughly analysed regarding this point. In 2003, 
Wang et al.  [175]  were able to show that in macrophages 
α 7 -nAChR stimulation leads to significant reduction in 
synthesis and release of tumour necrosis factor α.

  The anti-inflammatory effect of α 7 -nAChR stimula-
tion was further confirmed in experimental  sepsis , where 
α 7 -nAChR-deficient mice showed higher levels of splenic 
and circulating pro-inflammatory cytokines after appli-
cation of lipopolysaccharide  [175] . Electrical stimulation 
of the vagus nerve leads to inhibition of inflammation and 

protection of septic shock  [176] , a phenomenon that is 
mediated via the α 7 -nAChR  [175]  and termed as ‘cholin-
ergic anti-inflammatory pathway’. Since that work of 
Tracey and coworkers, the cholinergic anti-inflammatory 
pathway was extensively studied and broadly reviewed 
 [177] . However, not only the α 7 -nAChR can influence in-
flammation as the blockage of mAChR, especially M3 
mAChR, appears to protect from lipopolysaccharide-in-
duced  lung inflammation   [178] . Further, ChAT-express-
ing B cells were shown to reduce the recruitment of neu-
trophils during sterile lipopolysaccharide-induced endo-
toxaemia. Generally, the NNCS of immune cells seems to 
play a role in the regulation of immune system function.

  Auto-Immune Diseases and Immunodeficiencies
  Mice which develop auto-immune symptoms of  sys-

temic lupus erythematosus  showed an increased ACh con-
tent in blood, thymus and spleen  [179] .

   Sjögren’s syndrome  is a systemic autoimmune disorder 
mainly targeting the salivary glands and lacrimal glands, 
resulting in dry mouth and dry eyes. One important trig-
ger for the pathogenesis of Sjögren’s syndrome is the pro-
duction of auto-antibodies against M3 mAChR acting as 
an antagonist for this receptor, resulting in suppression 
of aquaporin 5 trafficking and subsequent impairment of 
fluid secretion  [180] .

  Spontaneously hypertensive rats develop an immune 
deficiency with decline in T cell function. These rats 
showed reduced ACh content as well as reduced ChAT 
expression in mononuclear leucocytes, probably due to 
the observed T cell deficiency  [181] .

   Human immunodeficiency virus  infection is character-
ized by an uncontrolled immune overstimulation which 
subsequently leads to a state of immunodeficiency. Thus, 
early therapies in dampening the overactivation of the 
immune system are needed. In a proof-of-concept, place-
bo-based study, the AChE inhibitor pyridostigmine was 
shown to reduce the T cell overactivation in human im-
munodeficiency virus patients  [182] .

  Musculoskeletal System

  The musculoskeletal system includes bones, muscles, 
cartilage, ligaments, tendons and joints.

  Also in bone the presence of cholinergic components 
was clearly demonstrated. Inkson et al.  [183]  reported 
about the production of AChE in osteoblasts which is be-
lieved to be involved in cell-matrix interaction in the 
bone. Our group was able to show that osteoblasts express 
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all necessary components for the synthesis and release of 
ACh  [184] . Further, nAChR and mAChR were identified 
also on primary bone cells, mesenchymal stem cells and 
osteoclasts  [185] .

  Fracture Healing and Osteoporosis
  Signalling via nAChR and mAChR is involved in bone 

mass turnover. In this regard the nAChR subunit α 2  and 
the M3 mAChR appear to play important roles as nAChR 
subunit α 2 -deficient  [186]  and M3 mAChR-deficient 
mice  [187, 188]  both show an osteoporosis-like pheno-
type.

  Smoking seems to be associated with a decrease in 
bone mass and a reduced capacity for fracture healing 
 [185] . However, the effect of nicotine in this regard ap-
pears to be dose dependent as low nicotine concentra-
tions induce osteoblast formation, high levels of nicotine 
on the other hand lead to desensitization of osteoblastic 
nAChR, downregulation of osteoblasts and upregulation 
of osteoclasts  [185] . Generally, the effect of nicotine on 
bone metabolism is controversially discussed, and more 
research in this field is definitely needed.

  In the skeletal muscle, expression of the ACh-synthe-
sizing enzyme CarAT was found in denervated extensor 
digitorum longus muscles of the rat  [3] . Further, prolifer-
ating myoblasts were shown to synthesize and release an 
ACh-like compound  [189] .

  Tenocytes of patella  [190, 191] , Achilles  [192]  and 
plantaris  [193]  tendons express ChAT and VAChT as 
well as M2 mAChR, and their expression and activity 
were shown to be enhanced under pathological condi-
tions such as  tendinosis , a non-inflammatory degenera-
tive disorder.

  Nicotine influences chondrocyte differentiation  [194, 
195] . Besides this, not much is known about the NNCS in 
the cartilage. Unpublished data from our laboratory, 
however, revealed that there is marked expression of the 
NNCS in the cartilage of patients with osteo-arthritis and 
rheumatoid arthritis.

  In 2008, Grimsholm et al.  [196]  were able to show that 
ChAT and the α 7 -nAChR are present in the synovial tis-
sue of the human knee joint. ChAT mRNA and protein 
were localized to fibroblast-like and macrophage-like 
cells as well as to some extent in blood vessel walls of the 
synovial sample, while α 7 -nAChR was mostly found in 
the synovial intimal lining layer  [197] . Recently, our 
group could show that different nAChR and mAChR as 
well as CarAT, transporters, and ACh-degrading en-
zymes are present in the synovial tissue of the human 
joint  [198] .

   Rheumatoid arthritis  (RA) is with 1% prevalence (fe-
male > male) one of the most common inflammatory 
joint diseases. Currently, disease-modifying antirheu-
matic drugs, like methotrexate, are still the most common 
treatment used for patients with RA; however, side effects 
can be severe. Recently, also anti-tumour necrosis factor-α 
treatment was successfully introduced as new therapeutic 
strategy, but unfortunately only in 26–42% of patients 
this treatment is effective  [199] . Thus, there is still great 
need for new therapeutic strategies in RA, and the NNCS 
could be a promising target for pharmacological inter-
vention.

  In patients with RA, ChAT expression was markedly 
pronounced, probably because of a higher number of 
macrophage-like and fibroblast-like cells in the synovial 
samples  [196] . There is increasing evidence for the role of 
synovial fibroblasts in the pathology of RA. In vitro stud-
ies on these cells revealed an anti-inflammatory effect for 
ACh and nicotine in these cells which was mediated via 
α 7 -nAChR  [200] . This anti-inflammatory effect of nico-
tine was also confirmed in vivo as administration of nico-
tine led to amelioration of experimentally induced arthri-
tis in mice  [201, 202] . Interestingly however, the effect of 
nicotine on arthritis seems to be strongly dependent on 
the mode and time point of application as well as the im-
mune status of the cells  [203] . The role of α 7 -nAChR in 
experimentally induced arthritis is however controver-
sially discussed as in studies with α 7 -nAChR-deficient ar-
thritic mice completely opposing results were obtained 
regarding disease progression by two different research 
groups  [204, 205] . Thus, more extensive research is need-
ed on the influence of the NNCS on inflammation and 
progression of RA.

  It was shown that the cholinesterase inhibitor neostig-
mine has promising analgesic effects in inflamed joints 
 [206] . However, there is one study where neostigmine 
was applied as analgesic agent intra-articularly to the rab-
bit knee joint, leading to increased infiltration of immune 
cells, cell hyperplasia and hypertrophy  [207] . Also here, 
mode and time point of application may be relevant for 
the effects observed. Generally, analgesia is an important 
aspect for RA treatment. The activation of several nAChR 
was reported to have an antinociceptive effect  [208, 209] . 
And also mAChR seem to play important roles in anal-
gesia in arthritis  [210] , and especially M1 mAChR was 
involved in the modulation of inflammatory pain in the 
paw  [211] . Thus, targeting the NNCS in RA could be ben-
eficial not only in respect to inflammation but also re-
garding analgesic effects.
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  Conclusion

  Taken together, non-neuronal ACh is produced by 
cells of various tissues and organ systems and acts in an 
autocrine and paracrine way on nAChR and mAChR 
present on the ACh-producing or neighbouring effector 
cells. In the non-diseased state the NNCS plays a role in 
many important biological and physiological processes 
like cell growth, adhesion, migration and differentiation. 
Thus, impairment or dysregulation of the NNCS and its 
functions can influence the pathogenesis and pathology 

of various diseases.  Table 1  is summarizing the diseases 
mentioned in this review and the NNCS components in-
volved in their pathology. In the last few years, studies on 
NNCS expression patterns and research on gene-defi-
cient mice gave further insights into the diverse func-
tions and importance of NNSC components in main-
taining homeostasis. For some diseases like e.g. overac-
tive bladder syndrome, pharmacological intervention of 
cholin ergic signalling became the therapy of choice. 
However, there are tissue and organ systems for which 
the NNCS has not yet been extensively studied and/or 

  Table 1.   NNCS components involved in pathological conditions, summarized for the different organ systems

 Organ system  Components involved 

 Integumentary system 
 Atopic dermatitis  ACh [23, 24] 
 Vitiligo  AChE [28] 
 Mal de Meleda  SLURP-1 and α 7  
 Psoriasis  SLURP-2 and α 3  [30, 31] 
 Pemphigus  M1, M2, M4, M5, α 3 , α 9  and α 10  [32] 
 Palmoplantar pustulosis  ChAT, AChE, α 7  and α 3  [34] 
 Skin cancer  α 7  [38] 
 Cutaneous wound healing  SLURP-1, SLURP-2 and nAChR [39] 

 Respiratory system 
 Asthma and COPD  ACh [47, 49], AChE and M1   –   3 [47] 
 Lung cancer  ACh [52], CTL1 and CTL2 [54], CTL4 [53], α 7  [55], M3 [56] 
 Cystic fibrosis  ACh [61], mAChR [62], α 7  [63, 64] 

 Cardiovascular system 
 Cardiac diseases  AChE [79], M3 [81] 
 Atherosclerosis  nAChR [83] 

 Digestive system 
 Gastro-oesophageal reflux disease  ACh [85], ChAT, VAChT and OCT1 [86] 
 Gastric and duodenal ulcers  ACh, M1 and M3 [89   –   91] 
 Colon cancer  M3 [96, 97], α 7  [98, 99], CTL1   –   5 [53], SLURP-1 [98, 100] 
 Inflammatory bowel disease  AChE [101], M2 and ChAT [104], α 3  [105], α 7  [106], α 5  [108] 
 Type 2 diabetes and pancreatitis  M3 [112, 115], nAChR [114] 

 Urinary system 
 Acute/chronic kidney disease  nAChR [132], α 7  [124, 135, 136] 
 Ischaemia-reperfusion  α 7  [126, 133, 134] 
 Overactive bladder syndrome  mAChR [127, 138   –   140] 
 Bladder outlet obstruction  M3 [145] 

 Reproductive system 
 Tubal ectopic pregnancy and pre-eclampsia  α 7  [152   –   155, 157] 
 Impaired sperm motility  α 7  [163], mAChR [164] 

 Immune system 
 Sepsis and endotoxaemia  α 7  [175], M3 [178] 
 Sjögren’s syndrome and systemic lupus erythematosus  M3 [180], ACh [179] 
 Immunodeficiencies  ACh and ChAT [181], AChE [182] 

 Musculoskeletal system 
 Fracture healing and osteoporosis  nAChR [185], α 2  [186], M3 [187, 188] 
 Tendinosis  ChAT, VAChT and M2 [190, 191] 
 Rheumatoid arthritis  ChAT [196], α 7  [200, 204, 205] 
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